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1  |   INTRODUCTION

An important problem in the social sciences is estimating the effect of a binary treatment on a con-
tinuous outcome in a panel data setting. Two prevalent methods for causal inference with panel data 
are difference-in-differences (DID) and the synthetic control method (SCM). DID uses time-varying 
panel data to control for time-invariant unobserved confounding, and identifies causal effects by con-
trasting the change in average outcomes pre- and post-treatment, between treated and control units 
(e.g. Ashenfelter, 1978). DID assumes no time-varying unobserved confounding that affects both 
treatment and outcomes, which is highly restrictive and cannot be empirically tested. Moreover, the 
linear DID estimator assumes i.i.d. errors, which ignores the temporal aspect of the data and under-
states standard errors for estimated treatment effects when the regression errors are serially correlated, 
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which can arise when the time-series lengths are not sufficiently long to reliably estimate the data-
generating process (Bertrand et al., 2004).

The SCM is a popular method that constructs a convex combination of control units that are sim-
ilar to a single treated unit in terms of pre-treatment outcomes or covariates (Abadie & Gardeazabal, 
2003; Abadie et al., 2010, 2015). The SCM estimator assumes there is a stable convex combination 
of the control units that absorbs all time-varying unobserved confounding and may be biased even 
if treatment is only correlated with time-invariant unobserved confounding, which is equivalent to 
the DID identification assumption (Ferman & Pinto, 2016). The SCM can be generalized to settings 
with staggered treatment adoption, where the time of initial treatment varies across multiple treated 
units (Ben-Michael et al., 2019; Dube & Zipperer, 2015) and to include features of DID estimation 
(Arkhangelsky et al., 2019; Ben-Michael et al., 2018) or Bayesian estimation (Brodersen et al., 2015; 
Pang et al., 2020).

We propose a method based on recurrent neural networks (RNNs), a class of neural networks that 
take advantage of the sequential nature of temporal data by sharing model parameters across multiple 
time periods (Graves, 2012; Hihi & Bengio, 1996). RNNs have been shown to outperform various 
linear models on time-series prediction tasks (Cinar et al., 2017). Unlike the SCM, RNNs are able to 
learn negative and non-linear interactions between control unit outcomes, and do not assume a spe-
cific activation function when learning representations of the control unit outcomes. RNNs are end-
to-end trainable, whereas each component of the Bayesian structural time-series model proposed by 
Brodersen et al. (2015) must be assembled and estimated independently. RNNs are capable of sharing 
learned model weights for predicting multiple treated units, and can thus generate more precise pre-
dictions in settings where treated units share similar data-generating processes.

We train RNNs on the control unit outcomes data to learn a useful latent representation of out-
comes in previous periods for predicting future outcomes. We weight the RNNs loss function by the 
propensity scores modelled in terms of pre-treatment covariates to ensure the weighted distribution of 
the observed confounders are balanced between treated and control units. The learned representation 
of control unit outcomes is then applied to the outcomes data of the treated units for predicting coun-
terfactual outcomes. The causal effect of treatment on the treated units is estimated by contrasting the 
counterfactual predictions to the observed outcomes of the treated.

The RNN-based method is related to lagged regression models, which regress post-treatment 
outcomes on pre-treatment outcomes and covariates for control units and then use the model 
weights to predict the counterfactual outcome for treated units (e.g. Athey et al., 2018; Belloni et al., 
2017; Carvalho et al., 2018). A closely related approach are linear factor models, which decompose 
the pre-treatment outcomes of control units into matrices of latent factors (i.e. time-varying coef-
ficients) and factor loadings (i.e. unit-specific intercepts) and predict counterfactual treated unit 
outcomes based on the estimated factors and loadings (e.g. Amjad et al., 2018; Athey et al., 2017; 
Xu, 2017). These models typically use regularization or matrix factorization to reduce the dimen-
sionality of the predictor set and thereby improve generalizability when applying the model fit on 
control units to treated units. These methods all assume unconfoundedness conditional on previous 
outcomes for control units.

The proposed method is also related to doubly robust estimators that combine both a propensity 
score model and an outcome model, which are consistent if either model is properly specified (Bang 
& Robins, 2005; Chernozhukov et al., 2018). Several studies independent of this work propose using 
neural networks for counterfactual prediction in non-panel observational data settings. For example, 
Farrell et al. (2021) provide inference results for semiparametric estimation of causal effects using 
multilayer perceptrons, while Hartford et al. (2017) and Bennett et al. (2019) integrate deep neural 
networks into an instrumental variables framework.
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In the section immediately below, we state the problem of counterfactual prediction within the 
potential outcomes framework; Section 3 introduces the approach of using RNNs for counterfactual 
prediction; Section 4 presents the results of placebo tests; Section 5 applies the method to the problem 
of estimating the long-run impact of US homestead policy on state government investment in public 
schooling; Section 6 concludes and offers potential avenues for future research.

2  |   POTENTIAL OUTCOMES FRAMEWORK

We explore a panel data setting where we observe a real-valued continuous outcome Yit for each 
i = 1, …, N units and in each t = 1, …, T time periods, and where a subset of units is exposed to a 
binary treatment Wit ∈ {0, 1} following an initial treatment period T0. We also observe time-invariant 
pre-treatment covariates, Vip, where p denotes the number of predictors.

We follow the Neyman–Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974, 1990; 
Splawa-Neyman et al., 1990), where there exists a pair of potential outcomes, Yit(1) and Yit(0), cor-
responding to the response to treatment and control, respectively. The potential outcomes framework 
implicitly assumes treatment is well-defined to ensure that each unit has the same number of potential 
outcomes. It also excludes interference between units, which would undermine the framework by 
creating more than two potential outcomes per unit, depending on the treatment status of other units. 
We only observe one of the two potential outcomes for each it value, while the other outcome is coun-
terfactual. The observed outcomes are: 

Define τit = Yit(1) − Yit(0) as the individual treatment effect. The causal estimand of interest is the 
average treatment effect on the treated (ATT):

In the empirical application, we focus on estimating the ATT averaged over the post-treatment period:

To estimate �ATT
t

, we predict Yit(0) for all it values with Wit = 1; that is, the counterfactual outcome of 
the treated units had they not been exposed to treatment. The counterfactual predictions are subsequently 
plugged into the estimator:

The causal estimand �ATT
t

 is identified by assuming that treatment and potential outcomes under control 
are unconfounded conditional on the pre-treatment outcomes and covariates.

(1)Yit =

{
Yit(0) if Wi =0 or t<T0

Yit(1) if Wi =1 and t≥T0.

(2)�
ATT
t

= E
[
� it|Wit = 1

]
, for t ∈

{
T0, …, T

}
.

(3)�
ATT =

T∑

t=T0

�
ATT
t

∕(T − T0 + 1).

(4)
�̂

ATT

t
=

∑
itWit

�
Yit(1) − Ŷit(0)

�

∑
itWit

.
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Assumption 1  Conditional unconfoundedness:

Assumption 1 ensures that treatment assignment affects potential outcomes under control only through 
covariates and the history of observed outcomes. The idea is that a hypothetical conditional random-
ization is taking place but, differently from observational studies under the usual strong ignorability 
assumption (Imbens & Rubin, 2015, Ch. 12), the conditioning set includes the outcome history.
Assumption 2  Overlap:

Assumption 2 is needed to summarize the treatment assignment mechanism by the propensity score, 
eit. As described in Section 3.1, we use the estimated propensity score to weight the RNNs loss func-
tion to correct for imbalances in the distributions of the conditioning set between the treated and 
control units.

3  |   RNNS FOR COUNTERFACTUAL PREDICTION

RNNs operate on n inputs X =
(
x

1, x
2, …, x

n
)⊤

=
(
x1, x2, …, xTx

)
∈ ℝ

n×Tx, where Tx is the input 
sequence length. The task is to predict outputs Y =

(
y1, y2, …, yTy

)
∈ ℝ

n×Ty, where output length 

Ty can differ from Tx, and Tx + Ty = T. Given X, we aim to learn a non-linear mapping ℱ( ⋅ ) to predict 
the next values of the output sequence, ŷt+1 = ℱ (X). RNNs capture non-linear correlations of the 
historical values of Yit for t = 1, …, T − 1 to the future values of Yit. The parameter sharing used in 
RNNs assumes the same learned model parameters are shared for all t; that is, the estimated non-linear 
correlations are stationary.

3.1  |  Training process

At each t, the RNNs input xt and pass it to a fixed-length vector ht called the hidden state, which stores 
information from the history of inputs up to xt and the previous hidden state, ht−1. Starting with an 
initial hidden state h0, ht is updated from t = 1, …, Tx according to the forward propagation equations:

where Q, R, and U are weight matrices, and b and d are constants. The constants are initialized at zero and 
h0 is initialized by drawing values from a uniform distribution (Glorot & Bengio, 2010). The hidden state 
activation function in Equation (6) is a non-linear function such as the hyperbolic tangent (tanh), which is 
a shifted and scaled version of the logistic function that is commonly used with RNNs because the gradi-
ent computation is cheaper compared to the logistic function (Socher, 2016).

In Equations (5) and (6), the activation function computes the value of ht using information from 
the previous hidden state ht−1 and the current input xt. The parameters used to compute ht are shared 

Wit⊥⊥Yit(0) |Yi,1,…, Yi,T−1, Vip.

0 < eit < 1, where eit = Pr(Wit = 1 |Yi,1, …, Yi,T0−1, Vip).

(5)at = b + Qht−1 + Rxt

(6)ht = f
(
at

)

(7)ŷt = d + Uht,
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for each value of t. In Equation (7), the RNNs read information from ht to output a sequence of pre-
dicted values ŷ

(t). The process of forward propagation culminates in producing a loss that compares 
ŷ

(t) and y(t). Gradients for Equations (5) and (8) are computed by the back-propagation through time 
algorithm (Goodfellow et al., 2016, p. 384), which are subsequently used for gradient descent to esti-
mate the network parameters.

We weight the RNNs objective function to minimize the MSE weighted by the propensity score, 
which we estimate by multiresponse lasso regression in order to share model parameters across mul-
tiple time periods and to shrink the coefficients of (all but one) correlated covariates towards zero 
(Simon et al., 2013; Tibshirani et al., 2012). In order to avoid extreme propensity weights, we employ 
overlap weighting so that observed values under treatment receive a weight of 1 − êit and observed val-
ues under control receive a weight equal to êit (Li et al., 2018). The propensity-score weighted MSE is:

where the right-hand side term is the ridge penalty on the learned weights, U =
(

u1, u2, …, uTy

)
 from 

Equation (7), and λ > 0 controls the regularization strength.
We train RNNs on control outcomes using a sliding window with step size of one. Each sliding 

window contains 10 time periods as input, and aims to predict following time period. Data are fed into 
the networks in batches of size 32 and the networks are trained for 500 epochs with mini-batch gradi-
ent descent on Equation (8). The last 20% of the training set is reserved for model validation. In order 
to prevent over-fitting, the training process stops early when there ceases to be improvement on the 
validation set loss within 25 epochs, and in the event of early stopping, the model weights associated 
with the lowest validation set loss are restored. In addition to applying a ridge penalty to Equation (8), 
we regularize the networks by applying dropout to both the hidden units and recurrent connections 
(Gal & Ghahramani, 2016).

3.2  |  Identification

After training, we can impute the missing potential outcomes under control Ŷit(0) with the forward 
propagation equations in (5)–(7). We train on the control units to predict the missing outcome Ŷit(0) 
for those it values with Wit=1. We then estimate �ATT

t
 Equation (4) by contrasting Ŷit(0) with Yit(1). 

Under Assumptions 1 and 2, �ATT
t

 can be identified.

3.3  |  Network architecture

We employ encoder–decoder networks, which are the standard for neural machine translation 
(Bahdanau et al., 2014; Cho et al., 2014; Vinyals et al., 2014) and are also widely used for predictive 
tasks, including speech recognition (e.g. Chorowski et al., 2015) and time-series forecasting (e.g. Zhu 
& Laptev, 2017). Encoder–decoder networks consist of an encoder and decoder RNN, both taking the 
form of long short-term memory (LSTM) networks. LSTMs are designed to resolve problems such as 
vanishing and exploding gradients, which prevent the networks from learning long-term dependencies 
in the data and tends to occur when the dimension of the hidden states is too small to summarize long 
input sequences (Bahdanau et al., 2014; Pascanu et al., 2013).

(8)
L =

1

Ty

Ty∑

t= 1

Wit(1 − êit) + (1 − Wit)̂eit

(
ŷt − yt

)2
+ �u

2
t
,
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The encoder RNN reads in X sequentially and the hidden state of the network updates according 
to Equation (6). The final hidden state of the encoder is a fixed-size context vector c that summarizes 
the input sequence, which is copied over to the decoder RNN. Thus, the hidden state of the decoder 
is updated recursively by

and the conditional probability of the next element of the sequence is

As in Equation (7), the decoder uses ht to predict yt at each t.
In our experiments and empirical application, the encoder–decoder networks consist of a two-layer 

LSTM encoder and single-layer gated recurrent unit (GRU) (Chung et al., 2014) decoder, each with 128 
hidden units and tanh activation, stacked on a fully connected output layer with no activation function, 
that is, f(x) = x. We compare the encoder–decoder networks with a baseline LSTM consisting of a single-
layer LSTM stacked on a fully connected output layer. The baseline LSTM has fewer network parameters 
than the encoder–decoder networks and is expected to be more suitable for smaller-dimensional data sets.

4  |   PLACEBO TEST EXPERIMENTS

We conduct a series of placebo test experiments on data without real interventions in order to evaluate 
the ability of the RNN-based estimator to recover a null average treatment effect, that is, �ATT

t
= 0. 

The rationale for placebo test experiments is that we know the ground-truth and Assumption 1 is satis-
fied in expectation because placebo treatment is assigned randomly. For each trial run, we randomly 
select N/2 placebo treated units and predict their outcomes for periods following a given placebo 
initial time period under a staggered treatment adoption setting.

We benchmark the performance of the encoder–decoder networks described in Section 3.3 and 
a baseline single-layer LSTM against several estimators in terms of the root mean squared error 
(RMSE), comparing the actual and predicted values. A full description of the benchmark estimators 
we consider are provided in the supporting material (SM), Section SM-1.

1.	 DID Difference-in-differences regression of outcomes on treatment and unit and time fixed 
effects (Athey & Imbens, 2018);

2.	 MC-NNM Nuclear norm regularized matrix completion estimator (Athey et al., 2017);
3.	 SCM Generalized SCM with the restriction of non-negative weights and zero intercept of the origi-

nal SCM, and weights estimated by gradient descent (Doudchenko & Imbens, 2016);
4.	 SCM-L1 Generalized SCM with an intercept and without weights restrictions, and weights esti-

mated by lasso linear regression (Doudchenko & Imbens, 2016);
5.	 VAR Stationary vector autoregression, with weights estimated by lasso linear regression (Kock & 

Callot, 2015).

The comparison between the RNN-based estimators and the VAR is particularly important because 
the latter is capable of modelling a linear dependency component, which is present in most real-world 
data sets, while the former is suitable for modelling a non-linear dependency component that poten-
tially spans across multiple time periods (Goel et al., 2017). However, RNNs typically require a large 
amount of training data to effectively capture non-linear and potentially long-term dependencies.

(9)ht = f
(
ht−1, yt−1, c; �

)
,

(10)Pr(yt |yt, …, yt−1, c) = f
(
ht−1, yt−1, c; �

)
.
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To facilitate the comparison, we run placebo test experiments on the data set underlying our em-
pirical application along with three high-dimensional data sets. The education spending data set, de-
scribed in Section 5.1, consists of historical data on the per-capita education spending of 36 US state 
governments over T = 203 years. We remove the treated units from the data set, leaving N = 18 control 
states. The Gaussian processes data are smooth signals generated using radial basis function to specify 
a Gaussian process with zero-valued mean function. The sine waves data are generated non-linear 
variations with frequencies in [1.0, 5.0], amplitudes in [0.1, 0.9] and random phases between [−π, π]. 
The Gaussian processes and sine waves data sets each consist of N = 4956 samples with sequence 
length of T=500. Lastly, the stock prices data set consists of stock market returns for N = 2453 stocks 
over T = 3082 days. The stock market is dynamic, non-stationary and complex in nature, and predict-
ing stock market returns is a challenging task due to its unpredictable and non-linear nature.

In Figure 1, we calculate the autocorrelation function ρ(k) = Cov(Yt, Yt+k)/var(Yt) for the observa-
tions in different placebo test data sets and a given lag k. The correlation decays quickly in the stock 
prices and Gaussian processes data sets, which suggests that the outcomes depend mostly on the 
observations in the short run. On the other hand, the correlation in the education spending and sine 
waves data sets remain prominent for the order lagged before 55 and 54, respectively, indicating that 
the dependency along the time dimension is longer term and of a more complicated structure. The 
RNN-based estimators and VAR are expected to hold an advantage over the other estimators in cap-
turing the temporal information or dependency in the long-run.

Figure 2 reports the average RMSE for each estimator on the education spending and Gaussian pro-
cesses data sets, varying the placebo initial treatment time under randomly assigned treatment in a stag-
gered treatment adoption setting. The horizontal axis is the ratio of the initial placebo treatment time to 
the number of periods in the placebo data, so higher values represent more training data, and estimates 
are jittered across the horizontal axis to avoid overlap. When trained on the education spending data, 
the average RMSE for the RNN-based estimators generally decreases as the amount of training data 
increases, reflecting the need for sufficient time periods. The LSTM and encoder–decoder networks 
outperform DID and matrix completion on the education spending data, and perform comparatively to 
the SCM estimators and VAR when trained on the higher-dimensional Gaussian processes data.

In Figure 3, we create 10 different sub-samples by selecting the first T daily returns of N ran-
domly selected stocks, keeping the overall data dimension fixed at N  ×  T  =  400,000, focusing on 
encoder–decoder networks, SCM estimators and VAR. The sub-sampled matrices range from very thin, 
N × T = (200 × 2000), to very fat, N × T = (2000 × 200). In each case, N/2 units are randomly selected 
for placebo treatment starting at an initial placebo time period of T/2. The average RMSE is the highest 
for the encoder–decoder networks when the data are very thin, which reflects the benefit of training on 
high-dimensional data. All estimators perform comparatively across the remaining sub-samples.

FIGURE 1  Autocorrelation function of placebo test data sets. Dashed horizontal lines represent 95% confidence 
bands [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Table 1 reports the average RMSE for the estimators with the placebo initial treatment period set to 
T/2. For the stock prices data, the first T = 500 daily returns of N = 1000 stocks are randomly sub-sampled 
from the larger data set. The baseline LSTM outperforms the encoder–decoder networks in the education 
spending and sine waves data sets, underscoring how the higher complexity of the encoder–decoder net-
works can hinder performance on data sets with smaller dimensions or those with simple signals, such as 
with the sine waves data. The VAR is capable of capturing the linear interdependencies among multiple 
time series and achieves the lowest average RMSE on the education spending data set, whereas the SCM 
estimators perform better on the other data sets. The RNN-based estimators perform comparably to the 
SCM and VAR estimators in the Gaussian processes, sine waves and stock prices data sets, and outper-
form both DID and matrix completion estimators in the education spending and sine waves data sets.

5  |   HOMESTEAD POLICY AND PUBLIC SCHOOLING IN 
THE US

In the empirical application, we are interested in estimating the impact of mid-19th century homestead 
policy on the development of state government public education spending in the US. Social scientists 
have long viewed the rapid development of public schooling in the US as a nation-building policy (e.g. 
Alesina et al., 2013; Bandiera et al., 2018; Meyer et al., 1979). According to this view, states across 
the US adopted compulsory primary education to homogenize the population during the Age of Mass 
Migration, when tens of millions of foreign migrants arrived to the country between 1850 and 1914.

Engerman and Sokoloff (2005) propose an alternative explanation for the rise of public schooling: 
state governments on the western frontier expanded investments in public education to attract eastern 
migrants following the passage of the Homestead Act (HSA) of 1862. The HSA opened for settlement 
hundreds of millions of acres of frontier land, and any adult citizen could apply for a homestead grant of 

F I G U R E  2   Placebo tests under staggered treatment adoption. Vertical lines represent ± 1.96 times the 
standard error of the average RMSE across 100 runs. †: Subset from (N × T) = (38 × 203); ‡: sub-sampled from 
(N × T) = (4956 × 500). Method: , DID; , Encoder–decoder (ours); , LSTM (ours); , MC-NNM; , SCM;  

, SCM-L1; , VAR [Colour figure can be viewed at wileyonlinelibrary.com]

(a) Education spending: (N × T ) = (18 × 203)†. (b) Gaussian processes: (N×T ) = (1, 000×500)‡.

www.wileyonlinelibrary.com
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160 acres of land, provided that they live and make improvements on the land for five years. According 
to this view, the sparse population on the frontier meant that state governments competed with each 
other to attract migrants in order to lower local labour costs and to increase land values and tax reve-
nues. State governments in public land states—that is, states crafted from the public domain and open 
to homesteading—offered migrants broad access to cheap land and property rights, unrestricted voting 
rights, and access to public schooling. State land states, which include the original 13 states, Kentucky, 
Maine, Tennessee, Texas, Vermont and West Virginia, were not open to homesteading because the 
state government had primary authority to distribute public land (Murtazashvili, 2013).

Another alternative view is that the HSA led to larger investments in public schooling by reduc-
ing the degree of land inequality on the frontier as a consequence of fixing land grants to 160 acres. 
Political economy frameworks (e.g. Acemoglu & Robinson, 2008; Besley & Persson, 2009) empha-
size that greater economic power of the ruling class reduces public investments. In the model of Galor 
et al. (2009), wealthy landowners block education reforms because public schooling favours industrial 
labour productivity and decreases the value in farm rents. Inequality in this context can be thought of 
as a proxy for the amount of de facto political influence elites have to block education reforms.

5.1  |  Data

We draw data on state government education spending from the records of 48 state governments dur-
ing the period of 1789–1932 (Sylla et al., 1993), 16 state governments during the period of 1933–1937 

F I G U R E  3   Stock prices data: placebo tests under staggered treatment adoption, with varying dimensions and keeping 
N × T = 400,000. Vertical lines represent ± 1.96 times the standard error of the average RMSE across 10 runs. Method: , 
Encoder–decoder (ours); , SCM; , SCM-L1 , VAR [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Sylla et al., 1995a,b), and US Census special reports for the years 1902, 1913, 1932, 1942, 1944, 
1946, 1948 and 1950–2008, covering 48 states (Haines, 2010; U.S. Census Bureau, 2010). Removing 
states and years with zero or near-zero variance results in a data set consisting of T = 203 observations 
for N = 38 US states, half of which are treated. We inflation-adjust the education spending data ac-
cording to the US Consumer Price Index and scale by the total free population in the decennial census. 
We impute the 34.1% of values in the data set that are missing by Last Observation Carried Forward 
(LOCF), which replaces each missing value with the most recent non-missing value prior to it, with 
remaining missing values carried backward. We visualize the extent of the missing data in Figure 
SM-1 and evaluate the sensitivity of the causal estimates to alternative imputation methods in Section 
5.3. Lastly, we log-transform the data to alleviate exponential effects.

The staggered treatment adoption setting is appropriate for this application because T0 varies 
across states that were exposed to homesteads following the passage of the HSA. We aggregate ap-
proximately 1.46 million records of individual land patents authorized under the HSA to the state level 
in order to determine how the initial treatment time varies across states (General Land Office, 2017). 
Using these records, we determine that the earliest homestead patents were filed in 1869 in about half 
of the public land states, while the remaining public land states had patents filed in subsequent years.

To minimize the discrepancy between the covariate distributions of public land states and state 
land states, we weight the training loss by propensity scores given per-capita education spending 
during pre-treatment years. We also include in the conditioning set state-level averages of farm sizes 
and farm values measured in the 1850 and 1860 censuses (Haines, 2010) and the state-level share of 
total miles of operational railroad track per square mile (Atack, 2013). These pre-treatment covariates 
control for homesteaders migrating to more productive land and for selection bias arising from differ-
ences in access to frontier lands.

While Assumption 1 cannot be directly tested, the placebo tests on pre-treatment data reported 
in Section 5.4 provide indirect evidence that unconfoundedness is not violated. The no interference 
assumption also cannot directly be tested; however, it is likely that state land states were indirectly 
affected by the out-migration of homesteaders from public land states. Interference in this case would 
likely cause the estimated treatment effect to be understated.

T A B L E  1   Average RMSE on test set under staggered treatment adoption

Education spending 
(18 × 203)a 

Gaussian processes 
(1000 × 500)b 

Sine waves 
(1000 × 500)b 

Stock prices 
(1000 × 500)c 

DID 1.611 ± 0.030 0.449 ± 10−4 0.467 ± 0.001 0.023 ± 2 × 10−4

Encoder–decoder 
(ours)

1.264 ± 0.021 0.449 ± 10−4 0.405 ± 0.001 0.023 ± 10−4

LSTM (ours) 1.085 ± 0.016 0.449 ± 10−4 0.398 ± 0.001 0.023 ± 10−4

MC-NNM 1.308 ± 0.029 0.449 ± 10−4 0.457 ± 0.001 0.023 ± 2 × 10−4

SCM 0.467 ± 0.009 0.458 ± 10−4 0.349 ± 0.001 0.022 ± 2 × 10
− 4

SCM-L1 0.478 ± 0.009 0.448 ± 10
− 4 0.285 ± 0.001 0.023 ± 2 × 10−4

VAR 0.314 ± 0.008 0.449 ± 10−4 0.326 ± 0.002 0.024 ± 10−4

Notes: Average RMSE ± 1.96 times the standard error across 100 runs, with N/2 treated units and T/2 treated periods. Bold indicates 
lowest average RMSE.
aSubset from (N × T) = (38 × 203).
bSub-sampled from (N × T) = (4956 × 500).
cSub-sampled from (N × T) = (2453 × 3082).
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5.2  |  Main estimates

We train RNNs on the state land states (i.e. control units) and use the learned weights to predict the 
counterfactual outcomes of public land states (i.e. treated units). The top panel of Figure 4 plots the 
counterfactual predictions of encoder–decoder networks along with the observed outcomes of treated 
and control units. Prior to first homestead patent in 1869, the predicted outcomes of the public land 
states closely track their observed outcomes, which indicates that the networks perform well in the 
prediction task. The bottom panel plots the differences in the observed and predicted outcomes of the 
public land states, which are bounded by 95% randomization confidence intervals. We estimate the 
confidence intervals by constructing a distribution of average placebo effects under the null hypoth-
esis (Cavallo et al., 2013; Firpo & Possebom, 2018; Hahn & Shi, 2017), and describe the estimation 
procedure in Section SM-2. The confidence intervals generally include zero for time periods prior to 
1869, when no treatment effect is expected.

F I G U R E  4   Encoder–decoder estimates of the impact of the Homestead Act on state government education 
spending, 1809 to 1942, with Last Observation Carried Forward imputed missing values. The dashed vertical 
line represents the first treatment time in 1869. Key: , observed treated; , observed control; , 
counterfactual treated; , �̂ATT

t
 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Counterfactual predictions of state government education spending in the absence of the HSA generally 
tracks the observed treated outcomes until the first treatment time, at which the counterfactual diverges 
from the increasing observed treated time-series. Taking the mean of the post-treatment impacts, �̂ATT

t
, 

the encoder–decoder estimate of the impact of the HSA on the education spending of public land states is 
0.681 log points [0.175, 1.186], as reported in the first column of Table 2. The confidence intervals sur-
rounding this estimate do not contain zero, which indicates that the estimated effect is significantly more 
extreme than the exact distribution of average placebo effects under the null hypothesis. To put the magni-
tude of this point estimate in perspective, it represents about 2.5% of the per-capita total expenditures for 
public schools in 1929 (Snyder & Dillow, 2010). Table 2 reports the causal estimates recovered by each of 
the benchmark estimators used in the placebo tests. The VAR estimated effect is slightly smaller and also 
statistically significant, whereas the other estimators yield wider confidence intervals that contain zero.

5.3  |  Sensitivity

In the main analyses, we impute values in the education spending data that are missing due to lack 
of coverage by LOCF. Table SM-1 presents ATT estimates on differently imputed data sets using 
four alternative imputation methods: k-nearest neighbour (k-NN), linear interpolation, multivariate 
imputation by chained equations (MICE) and random forests. The encoder–decoder estimates remain 
significant when missing values are replaced by linear interpolation, and lose their significance when 
missing values are replaced by the other imputation methods.

We also evaluate the sensitivity of the causal estimates to different configurations of RNNs hyper-
parameters by varying the hidden activation function (tanh or sigmoid); the number of hidden units 
per hidden layer (128 or 256 units); early stopping patience (25 or 50 epochs); and the dropout prob-
ability (p = 0.2 or p = 0.5). We report the ATT estimates by hyperparameter configuration in Table 
SM-2. The encoder–decoder causal estimates are positive and significant for half of the 16 different 
hyperparameter configurations.

5.4  |  Placebo tests

We assess the accuracy of the estimators by conducting placebo tests on the pre-treatment data, when 
no treatment effect is expected. Among the actual treated units, we assign treatment times that are 

T A B L E  2   ATT estimates by estimator

�̂
ATT

�̂
ATT

placebo

DID −0.597 [−2.352, 1.351] −0.030 [−1.212, 1.396]

Encoder–decoder (ours) 0.681 [0.175, 1.186] 0.213 [−1.662, 2.019]

LSTM (ours) 0.266 [−0.342, 0.876] −0.083 [−2.146, 1.343]

MC-NNM −0.603 [−2.429, 0.994] 0.132 [−0.661, 1.136]

SCM 0.404 [−0.075, 1.089] 0.878 [−0.187, 2.463]

SCM-L1 0.348 [−0.316, 1.029] 0.517 [−0.799, 1.977]

VAR 0.407 [0.231, 1.062] 0.868 [−1.381, 5.110]

Notes: First column is ATT estimates of the impact of the HSA on log per-capita state government education spending. Second 
column is placebo ATT estimates, with the placebo initial treatment time set to T0/2. Bracketed values are 95% randomization 
confidence intervals. Bold indicates statistical significance at the α = 0.05 level.
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equally spaced between the placebo T0, which is half of the actual T0, and T0 − 1. We then construct 
randomization confidence intervals for the placebo counterfactual trajectories, which we report in the 
second column of Table 2. For each estimator, the confidence intervals contain zero, providing indi-
rect evidence that Assumption 1 is not violated.

6  |   CONCLUSION

This paper makes a methodological contribution in proposing an RNN-based estimator for estimat-
ing the effect of a binary treatment in panel data settings. RNNs are specifically structured to exploit 
temporal dependencies in the data and can learn non-linear combinations of control units; the latter is 
useful when the data-generating process underlying the outcome depends non-linearly on the history 
of its inputs. Most real-world time series data have a linear dependency component, for which VARs 
are suitable, and a non-linear dependency component that potentially spans across multiple time pe-
riods, for which RNNs are suitable. RNNs are unable to handle both linear and non-linear patterns, 
which are often both present in real-world time-series, and typically require a large amount of training 
data to effectively capture non-linear and potentially long-term dependencies. In placebo tests, we 
find that RNN-based estimators perform well in terms of minimizing out-of-sample error compared to 
VAR and other linear estimators on both small- and high-dimensional data sets with varying degrees 
of temporal dependency. An area of further research is extending the method to combine linear time-
series models, such as VAR, with RNNs in order to more accurately model complex autocorrelation 
structures in the data (e.g. Goel et al., 2017).

In the empirical application, we estimate the impact of mid-19th century homestead policy on the 
development of state government public education spending in the United States. We train RNNs on 
states unaffected by homestead policy and use the learned weights to predict the counterfactual out-
comes of public land states, which were open to homesteading. The encoder–decoder estimate of the 
impact of homestead policy on the education spending of public land states is 0.681 log points [0.175, 
1.186], which represents about 2.5% of the per-capita total expenditures for public schools in 1929. 
This estimate is generally robust to the configuration of RNN hyperparameters and the missing data 
imputation method. The result is consistent with both the historical view that state governments in 
public land states expanded public education investments to attract eastern migrants, and the political 
economy view that homesteading deterministically lowered land inequality on the frontier and conse-
quently prevented wealthy landowners from blocking public schooling reforms.
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