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Abstract: Randomized control trials (RCTs) are the gold standard for estimating causal effects, but often use
samples that are non-representative of the actual population of interest.Wepropose a reweightingmethod for
estimating population average treatment effects in settings with noncompliance. Simulations show the pro-
posed compliance-adjusted population estimator outperforms its unadjusted counterpart when compliance
is relatively low and can be predicted by observed covariates. We apply the method to evaluate the effect of
Medicaid coverage on health care use for a target population of adults who may benefit from expansions to
the Medicaid program. We draw RCT data from the Oregon Health Insurance Experiment, where less than
one-third of those randomly selected to receive Medicaid benefits actually enrolled.
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1 Introduction
Randomized control trials (RCTs) are the gold standard for estimating the causal effect of a treatment. An RCT
may give unbiased estimates of sample average treatment effects, but external validity is an issue when RCT
participants are unrepresentative of the actual population of interest. For example, participants in an RCT
in which individuals volunteer to sign up for health insurance may be in poorer health at baseline than the
overall population. External validity is particularly relevant to policymakers who require information on how
the treatment effect would generalize to the broader population.

A new research frontier in causal inference focuses on developing methods for extrapolating RCT results
to a population [1–3]. Existing approaches to this problem are based in settingswhere there is full compliance
with treatment; however, noncompliance is a prevalent issue in RCTs. Noncompliance occurs when individu-
als who are assigned to the treatment group do not accept the treatment. For individuals assigned to control,
we are unable to observewhowould have complied had they been assigned treatment. Noncompliance biases
the intention–to–treat (ITT) estimate of the effect of treatment assignment toward zero.

We propose a reweighting method for estimating complier–average causal effects for the target popula-
tion from RCT data with noncompliance, and refer to this estimator as the Population Average Treatment
Effect on Treated Compliers (PATT-C). We model compliance in the RCT in order to predict the likely compli-
ers in the RCT control group. Assuming that the response surface is the same for compliers in the RCT and
populationmembers who received treatment, we then predict the response surface for all RCT compliers and
use the predicted values from the response surface model to estimate the potential outcomes of population
members who received treatment, given their covariates.
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Our approach for estimating PATT-C differs from previous reweighting methods because we only need to
estimate the potential outcomes for RCT compliers and we cannot observe who in the control group would
have complied had they been assigned treatment. In Stuart et al. [2], for example, a propensity scoremodel is
used to predict participation in the RCT, given pretreatment covariates common to both the RCT and popula-
tion data. Individuals in the RCT and population are then weighted according to the inverse of the estimated
propensity score. Hartman et al. [3] propose a method of reweighting the responses of individuals in an RCT
according to the covariate distribution of the population. Reweighting methods typically leverage exchange-
ability of potential outcomes between the covariate-adjusted treated and controls in the RCT. In our approach,
the potential outcomes between the complier treated and complier controls are not exchangeable by design,
since we need to assume we know the compliance model.

When estimating the average causal effect for compliers from an RCT, researchers typically scale the es-
timated ITT effect by the compliance rate, assuming that there is only single crossover from treatment to
control.¹When extrapolating RCT results to a population, onemight simply reweight the ITT effect according
to the covariate distribution of the population and then divide by the proportion of treated compliers in the
population in order to yield a population average effect of treatment on treated compliers. However, we do
not observe the population compliance rate, and it is likely to differ across subgroups based on pretreatment
covariates. By explicitly modeling compliance, our approach allows researchers to decompose population es-
timates by covariate group, which is useful for policymakers in evaluating the efficacy of policy interventions
for subgroups of interest in a population.

We apply the PATT-C estimator to measure the effect of Medicaid coverage on health care use for a target
population of adults who may benefit from government-backed expansions to the Medicaid program. We are
particularly interested inmeasuring the effect of Medicaid on emergency room (ER) use because it is themain
delivery system throughwhich the uninsured receive health care, and the uninsured could potentially receive
higher quality health care through primary care visits. An important policy question is whether Medicaid
expansions will decrease ER utilization and increase primary care visits by the previously uninsured. We
draw RCT data from a large-scale health insurance experiment where less than one-third of those randomly
selected to receive Medicaid benefits actually enrolled.

The paper proceeds as follows: Section 2 presents the proposed estimator and the necessary assumptions
for its identifiability; Section 3 describes the estimation procedure; Section 4 reports the estimator’s perfor-
mance in simulations; Section 5 uses the estimator to identify the effect of extending Medicaid coverage to
the low–income adult population in the U.S.; Section 6 discusses the results and offers direction for future
research.

2 Estimator
We are interested in using the results of an RCT to estimate complier–average causal effects for a target popu-
lation. Compliancewith treatment in the population is not assigned at random. Itmay depend on unobserved
variables, thus confounding the effect of treatment received on the outcome of interest. RCTs are needed to
isolate the effect of treatment received.

Ideally, we would take the results of an RCT and reweight the sample such that the reweighted covariates
match the those in the population. In practice, one rarely knows the true covariate distribution in the target
population. Instead, we consider data from an observational study in which participants are representative
of the target population. The proposed estimator combines RCT and observational data to overcome these
issues.

1 Alternative methods for compliance-adjusting sample estimates include estimating sharp bounds to the ITT effect in the presence
of noncompliance [4, 5]; adjustment for treatment noncompliance using principal stratification [6, 7]; and maximum-likelihood
and Bayesian inferential methods [8].
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2.1 Assumptions

Let Yisd be the potential outcome for individual i in group s and treatment received d. Let Si ∈ {0, 1} denote
the sample assignment, where s = 0 is the population and s = 1 is the RCT. Let Ti ∈ {0, 1} indicate treat-
ment assignment and Di ∈ {0, 1} indicate whether treatment was actually received. Treatment is assigned at
random in the RCT, so we observe both Di and Ti when Si = 1. For compliers in the RCT, Di = Ti.

The absence of Ti in the subscript of the potential outcomes notation implicitly assumes the exclusion
restriction for noncompliers, which precludes treatment assignment from having an effect on the potential
outcomes of noncompliers in the RCT [9]. Also implicit in our notation is the assumption of no interference
between units, which prevents the potential outcomes for any unit from varying with treatments assigned to
other units [10].

LetWi be individual i’s observable pretreatment covariates that are related to the sample selectionmech-
anism for membership in the RCT, treatment assignment in the population, and complier status. Let Ci be
an indicator for individual i’s compliance with treatment, which is only observable for individuals in the RCT
treatment group. In the population,we suppose that treatment ismade available to individuals based on their
covariatesWi.² Individuals with Ti = 0 do not receive treatment, while those with Ti = 1may decide whether
or not to accept treatment. For individuals in the population, we only observe Di — not Ti.

Assumption 1. Consistency under parallel studies:

Yi0d = Yi1d ∀ i , d = {0, 1}.

Assumption (1) requires that each individual i has the same response to treatment received, whether i is in
the RCT or not. Compliance status Ci is not a factor in this assumption because we assume that compliance
is conditionally independent of sample and treatment assignment for all individuals with covariatesWi.

Assumption 2. Conditional independence of compliance and sample and treatment assignment:

Ci ⊥⊥ Si , Ti | Wi , 0 < P(Ci = 1 | Wi) < 1.

Assumption (2) implies that P(Ci = 1|Si = 1, Ti = 1,Wi) = P(Ci = 1|Si = 1, Ti = 0,Wi), which is useful
when predicting the probability of compliance as a function of covariatesWi. Together, Assumptions (1) and
(2) ensure that potential outcomes do not differ based on sample assignment or receipt of treatment.

Assumption (3) ensures the potential outcomes for treatment are independent of sample assignment for
individuals with the same covariatesWi and treatment assignment.

Assumption 3. Strong ignorability of sample assignment for treated:

(Yi01, Yi11) ⊥⊥ Si | (Wi , Ti = 1, Ci = 1), 0 < P(Si = 1 | Wi , Ti = 1, Ci = 1) < 1.

Wemake a similar assumption for the potential outcomes under control.

Assumption 4. Strong ignorability of sample assignment for controls:

(Yi00, Yi10) ⊥⊥ Si | (Wi , Ti = 1, Ci = 1), 0 < P(Si = 1 | Wi , Ti = 1, Ci = 1) < 1.

Note that Assumptions (3) and (4) imply strong ignorability of sample assignment for treated and control non-
compliers since Assumption (2) states that compliance is also independent of sample and treatment assign-
ment, conditional onWi. However, we are interested only on modeling the response surfaces for compliers.

2 We use the sameWi across all identifying assumptions, which implicitly assumes that the observable covariates that determine
sample selection also determine population treatment assignment and complier status.
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Restrictive exclusion criteria in RCTs can result in a sample covariate distribution that differs substan-
tially from the population covariate distribution, thereby reducing the external validity of RCTs [11]. High
rates of exclusion pose a threat to Assumptions (3) and (4) if exclusion increases the likelihood that there are
unobserved differences between the RCT and target population that are correlated with potential outcomes.
For example, the RCT in our application required enrolled participants to recertify their eligibility status ev-
ery six months during the study period. The exclusion of participants who failed to recertify because their
household income exceeded a given cutoff threatens strong ignorability if the factors that contributed to the
failure to recertify are correlated with unobservables that are also correlated with potential outcomes. While
we cannot directly test the strong ignorability assumptions, bias arising from violations of these assumptions
would cause the placebo tests described in Section 5.4 to fail.

We include an additional assumption to identify the average causal effect for compliers, as in Angrist et
al. [12].

Assumption 5. One-sided noncompliance:

P(Di | Ti = 0) = 0, ∀ i.

Assumption (5) ensures that noncompliance is one-sided; i.e., individuals assigned to control are not allowed
to receive treatment. It explicitly rules out the existence of individuals who always receive treatment (i.e,
never-takers) and those who receive the opposite of their treatment assignment (i.e., defiers).

2.2 Causal diagram

Figure 1 shows the assumptions needed to identify PATT-C in the form of a causal diagram [13]. The missing
arrow between Ti (or Si) and Ci signifies that treatment (or sample) assignment may only depend on compli-
ance status through covariatesWi, by Assumption (2). Likewise, themissing arrow between Yisd and Ti (or Si)
signifies that potential outcomes may only depend on treatment (or sample) assignment through covariates,
by Assumptions (3) and (4).

Confounding arcs represent potential back-door paths that contain only unobserved variables. The ex-
istence of back-door paths from Di to Yisd through Si and Ci imply that the average causal effect of Di on
Yisd cannot be identified by just conditioning onWi; that is, we cannot ignore the role of Si and Ci. From the
internal validity standpoint, the role of Wi is critical: in the presence of unobserved confounders, there is a
back-door pathway from Ti back toWi and into Yisd.

2.3 PATT-C

PATT-C is the average causal effect of taking up treatment estimated on individuals who received treatment in
the population. This interpretation follows directly fromAssumptions (1) and (2), which ensure that potential
outcomes do not differ based on sample assignment or receipt of treatment. It is written as follows:

τPATT-C = E
(︀
Yi01 − Yi00 | Si = 0, Di = 1

)︀
. (1)

Theorem (1) relates the treatment effect in the RCT to the treatment effect in the population (proof given in
Appendix A).

Theorem 1. Under Assumptions (1) – (5),

τPATT-C = E01
[︀
E
(︀
Yi11 | Si = 1, Di = 1,Wi

)︀]︀
− E01

[︀
E
(︀
Yi10 | Si = 1, Ti = 0, Ci = 1,Wi

)︀]︀
, (2)

whereE01
[︀
E(· | . . . ,Wi)

]︀
denotes the expectationwith respect to the distribution ofWi for populationmembers

who received treatment.
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Figure 1: Causal diagram representing the effect of treatment received, Di, on potential outcomes, Yisd. Solid unidirectional
arrows represent causal links between observed variables. Dashed bidirectional arrows represent confounding arcs containing
only latent variables, which are implicit in the confounding arcs.

3 Estimation procedure
There are two challenges in turning Theorem (1) into an estimator of τPATT-C in practice. First, we must esti-
mate the inner expectation over potential outcomes of compliers in the RCT. In the empirical example, we
use an ensemble of algorithms to estimate the response surface for compliers in the RCT, given their covari-
ates. Thus, the first term in the expression for τPATT-C is estimated by the weighted average of points on the
response surface, evaluated for each treated population member’s potential outcome under treatment. The
second term is estimatedby theweighted average of points on the response surface, evaluated for each treated
population member’s potential outcome under control.

The second challenge is that we cannot observe which individuals are included in the estimation of the
second term. In the RCT control group, Ci is unobservable, as they always receive no treatment (Di = 0). We
must estimate the second term of Eq. (2) by predicting who in the control group would be a complier had
they been assigned to treatment. Explicitly modeling compliance allows us to decompose PATT-C estimates
by subgroup according to covariates common to both RCT and observational datasets. This approach also
accounts for settings where the compliance rate differs between the sample and population, as well as across
subgroups.

The procedure for estimating τPATT-C using Theorem (1) is as follows:

S.1 Using the group assigned to treatment in the RCT (Si = 1, Ti = 1), train a model (or an ensemble of
models) to predict the probability of compliance as a function of covariatesWi.

S.2 Using themodel from S.1, predict who in the RCT assigned to controlwould have complied to treatment
had they been assigned to the treatment group.³

S.3 For the observed compliers assigned to treatment and predicted compliers assigned to control, train a
model to predict the response usingWi and Di, which gives E(Yi1d | Si = 1, Di = d,Wi) for d ∈ {0, 1}.

3 We dichotomize the predicted values based on an “optimal” cut-point that minimizes the Euclidean distance between the ROC
curve and the (0,1) corner of the ROC plane. This method, which is commonly used in the epidemiology literature [14], minimizes
misclassification error by finding the cut-point closest to where the true positive rate (i.e., the proportion of sample compliers
correctly identified) is 1 and the inverse of the true negative rate (i.e., the share of noncompliers correctly identified) is 0. We locate
a prediction threshold of 45% that balances the true positive and true negative rates at about 70% each.
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S.4 For all individuals who received treatment in the population (Si = 0, Di = 1), estimate their potential
outcomes using the model from S.3, which gives Yi1d for d ∈ {0, 1}. The mean counterfactual Yi11
minus the mean counterfactual Yi10 is the estimate of τPATT-C.

Observe that Assumptions (3) and (4) are particularly important for estimating τPATT-C: the success of the
proposed estimator hinges on the assumption that the response surface is the same for compliers in the RCT
and target population. If this does not hold, then the potential outcomes Yi10 and Yi11 for target population in-
dividuals cannot be estimated using themodel from S.3. Section 5.3 discusses whether the strong ignorability
assumptions are plausible in the empirical application.

3.1 Modeling assumptions

In addition to the identification assumptions, we require additionalmodeling assumptions for the estimation
procedure. As pointed out in Section 2.1, we require thatWi is complete because if any relevant elements ofWi
are not controlled, then there is a backdoor pathway from Ti back toWi and into Yisd. Additionally,we assume
that the compliance model is accurate in predicting compliance in the training sample of RCT participants
assigned to treatment and also generalizable to RCTparticipants assigned to control (S.1 and S.2).We describe
below the method of evaluating the generalizability of the compliance model.

3.2 Ensemble method

In the empirical application, we use the super learner weighted ensemble method [15, 16] for the estimation
steps S.1 and S.3. The super learner combines algorithms with a convex combination of weights based on
minimizing cross-validated error, and typically outperforms single algorithms selected by cross-validation.

We choose a variety of candidate algorithms to construct the ensemble, with a preference for algorithms
that tend to perform well in supervised classification tasks. We also have a preference for algorithms that
have a built-in variable selection property. The idea is that we input the same Wi and each candidate al-
gorithm selects the most important covariates for predicting compliance status or potential outcomes.⁴ We
select three types of candidate algorithms: additive regression models [17]; gradient boosted regression [18];
L1 or L2-regularized linearmodels (i.e., lasso or ridge regression, respectively) [19]; and ensembles of decision
trees (i.e., random forests) [20]. Lasso is particularly attractive because it tends to shrink all but one of the
coefficients of correlated covariates to zero.

4 Simulations
We conduct a simulation study comparing the performance of the PATT-C estimator against its unadjusted
analogue, which we refer to as the Population Average Treatment Effect on the Treated (PATT):

τPATT = E01
[︀
E
(︀
Yi11 | Si = 1, Ti = 1,Wi

)︀]︀
− E01

[︀
E
(︀
Yi10 | Si = 1, Ti = 1,Wi

)︀]︀
. (3)

Eq. (3) identifies the population-average causal effect of treatment assignment, adjusted according to the co-
variate distribution of population members who received treatment. PATT is estimated following the same
estimation procedure as PATT-C, except that in estimation step S.3 the response curve is estimated on all RCT
participants, regardless of compliance status, conditional on their covariates and actual treatment received.
Identical to S.4 in the estimation procedure for PATT-C, we then use the response model to estimate the out-
comes of population members who received treatment given their covariates. Like the PATT-C estimator, the

4 A potential concern when predicting potential outcomes is that the algorithm might shrink the treatment received predictor to
zero, which would result in no difference between counterfactual potential outcomes.
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PATT estimator crucially relies on the assumption that the response surface is the same for RCT participants
and population members who received treatment.

We compare the population estimators against the sample Complier Average Causal Effect (CACE) [21],
which is commonly referred to the LocalAverageTreatment Effect (LATE) in the econometrics literature [12, 22].
In the context of program evaluation, it ismore relevant than the ITT estimator because only RCT participants
who received treatment would have their outcomes affected by treatment in the presence of a nonnegative
treatment effect.

CACE is defined as the average causal effect of treatment received restricted to sample compliers:

τCACE = E
(︀
Yi11 − Yi10 | Si = 1, Ci = 1

)︀
. (4)

In other words, CACE is the treatment effect for RCT participants who would comply regardless of treatment
assignment. However, we are unable to observe the compliance status of RCT participants assigned to control
becausewe do not know if theywould have complied if they had been assigned to treatment. A generalization
of the instrumental variables estimator of the CACE in the presence of noncompliers is given by:

τ̂CACE =
E
(︀
Yi11 − Yi10 | Si = 1

)︀
P(Ti = Di = 1 | Si = 1) , (5)

which is identified under Assumption (5). The estimator is equivalent to scaling the ITT effect by the sample
proportion of treated compliers [23].

4.1 Simulation design

The simulation is designed so that the effect of treatment is heterogeneous and depends on covariates which
aredifferent in theRCTand target population. Thedesign satisfies the conditional independence assumptions
in Figure 1.

In the simulation, RCT eligibility, complier status, and treatment assignment in the population de-
pend on multivariate normal covariates (W1

i ,W2
i ,W3

i ,W
4
i ) with means (0.5, 1, −1, −1) and covariances

Cov(W1
i ,W2

i ) = Cov(W1
i ,W4

i ) = Cov(W2
i ,W4

i ) = Cov(W3
i ,W

4
i ) = 1 and Cov(W1

i ,W3
i ) = Cov(W2

i ,W3
i ) = 0.5.

The first three covariates are observed by the researcher andW4
i is unobserved.Ui , Vi , Ri, andQi are standard

normal error terms. Ui , Vi , Ri , Qi, and (W1
i ,W2

i ,W3
i ,W

4
i ) are mutually independent.

The equation for selection into the RCT is

Si = I(e2 + g1W1
i + g2W2

i + g3W3
i + e4W

4
i + Ri > 0).

The parameter e2 varies the fraction of the population eligible for the RCT and e4 varies the degree of con-
founding with sample selection. We set the constants g1, g2, and g3 to be 0.5, 0.25, and 0.75, respectively.

Complier status is determined by

Ci = I(e3 + h2W2
i + h3W3

i + e5W
4
i + Qi > 0),

where e3 varies the fraction of compliers in the population, and e5 varies the degree of confounding with
treatment assignment. We set the constants h2 and h3 to 0.5.

For individuals in the population (Si = 0), treatment is assigned by

Ti = I(e1 + f1W1
i + f2W2

i + e6W4
i + Vi > 0),

where e1 varies the fraction eligible for treatment in the population and e6 varies the degree of confounding
with sample selection. We set the constants f1 and f2 to 0.25 and 0.75, respectively. For individuals in the
RCT (S1 = 1), treatment assignment Ti is a sample from a Bernoulli distribution with probability p = 0.5.

Finally, the response is determined by

Yisd = a + bDi + c1W1
i + c2W2

i + c3W4 + dUi ,
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where we set a, c1, c3, and d to 1 and c2 to 2. The treatment effect b is heterogeneous:

b =
{︃
1, if W1

i > 0.75
−1, if W1

i ≤ 0.75

Wegenerate a population of 30,000 individuals and randomly sample 5,000. Those among the 5,000who
are eligible for the RCT (Si = 1) are selected. Similarly, we sample 5,000 individuals from the population and
select those who are not eligible for the RCT (Si = 0) to be our observational study participants.⁵We set each
individual’s treatment received Di according to their treatment assignment and complier status and observe
their responses Yisd. In this design, the manner in which Si, Ti, Di, Ci, and Yisd are simulated ensures that
Assumptions (1) – (5) hold.

In the assigned-treatment RCT group (Si = 1, Ti = 1), we train a gradient boosted regression on the
covariates to predict who in the control group (Si = 1, Ti = 0) would comply with treatment (Ci = 1), which
is unobservable. These individuals would have complied had they been assigned to the treatment group. For
this group of observed compliers to treatment and predicted compliers from the control group of the RCT, we
estimate the response surface by training another gradient boosted regression on features (W1

i ,W2
i ,W3

i ) and
Di.

4.2 Simulation results

We vary each of the parameters e1, e2, e3, e4, e5, and e6 along a grid of five random standard normal values
in order to generate different combinations of rates of compliance, treatment eligibility, RCT eligibility in the
population, and confounding. For each possible combination of the six parameters, and holding all other pa-
rameters constant, we compute over 10 simulation runs the average rootmean squared error (RMSE) between
the true population average treatment effect and the PATT-C, PATT, or CACE estimates. Averaging across com-
binations, PATT yields the highest average RMSE (1.06), followed by the CACE (0.89), and the PATT-C (0.76).
Since PATT does not adjust for compliance, we would expect bias relative to the PATT-C in settings with non-
compliance.

Figures 2 and 3 show the average RMSE of the estimators as a function of the population compliance
rate and the share of population members eligible to participate in the RCT or the population treatment rate,
respectively. ThePATT estimator does not correct for bias resulting fromnoncompliance in thepopulation and
consequently performs poorly when the population compliance rate is relatively low (i.e., ≤ 60%). The PATT-
C estimator corrects for noncompliance in the population and thus outperforms the PATT in low-compliance
settings. The CACE corrects for noncompliance in the sample, and underperforms compared to the PATT-C
due to differences between the sample and population.

Figure 4 compares the average RMSE of the estimators at varying levels of compliance in the popula-
tion. The error for each of the estimators decreases as a greater share of population members comply with
treatment. PATT-C outperforms both PATT and CACE in terms of minimizing RMSE when the population com-
pliance rate is below 90%. The PATT outperforms the PATT-C only at a 90% compliance rate, and the CACE
outperforms the PATT when the population compliance rate is at 60% or below.

In the Appendix, Figures B1, B2, and B3 plot the relationships between estimation error and the degrees
of confounding in the mechanisms that determine compliance, treatment assignment, and sample selection,
respectively. The estimation error of PATT-C is comparatively less invariant to increases in the degree of con-
founding in the three mechanisms compared to its unadjusted counterpart. The estimation error of CACE is
generally more variable than that of the population estimators due to CACE’s inability to account for differ-
ences between the sample and target population.

5 This set-up mimics the reality that a population census is usually impossible.
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Figure 2: Average RMSE, binned by compliance rate and percent eligible for the RCT. Notes: Darker tiles correspond to higher
errors and white tiles correspond to missing simulated data.

Figure 3: Average RMSE binned by compliance rate and treatment rate.
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Figure 4: Average RMSE according to compliance rates in the population.

5 Application: Medicaid and health care use
We apply the PATT-C estimator to measure the effect of Medicaid coverage on health care use for a target
population of adults who may benefit from expansions to the Medicaid program. In particular, we examine
the population of nonelderly adults in the U.S. with household incomes at or below 138% of the Federal
Poverty Level (FPL) — which amounts to $32,913 for a four–person household in 2014 — who may be eligible
for Medicaid following the Affordable Care Act (ACA) Medicaid expansion.

We draw RCT data from the Oregon Health Insurance Experiment (OHIE) [24–27], which randomly as-
signed Medicaid coverage to the uninsured and examined their subsequent health care use. Subsequent re-
search calls in to question the external validity of the OHIE, which resulted in the counterintuitive finding
that Medicaid increased ER use among RCT participants. Quasi-experimental studies on the impact of the
2006 Massachusetts health reform — which served as a model for the ACA — show that ER use decreased or
remained constant following the reform [28, 29]. Kowalski [30] re-weights the LATE estimated on the OHIE
sample to a broader population in Massachusetts using observational data from the Behavioral Risk Factor
Surveillance System (BRFSS) [31] and finds Medicaid significantly decreased the probability of visiting the
ER, and had no significant effect on the number of ER visits.
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5.1 RCT sample

In 2008, a group of uninsured low-income adults participated in the OHIE for the chance to apply to receive
health insurance through a state Medicaid program. In line with program eligibility requirements, partici-
pants were restricted to Oregon residents aged 19 to 64 who were not otherwise eligible for public insurance,
who had been without insurance for six months, had income below the FPL, and held assets below $2,000.
Treatment assignment occurred at the household level: participants selected by the lottery won the opportu-
nity for themselves and any household member to apply for Medicaid. Within a sample of 74,922 individuals
representing 66,385 households, 29,834 participants were selected by the lottery; the remaining 45,008 par-
ticipants served as controls in the experiment.

Participants in selected households were enrolled in Medicaid if they returned an enrollment applica-
tion within 45 days of receipt. Only 30% of participants in selected households successfully enrolled. The
low compliance rate is primarily due to failure to return an application or demonstrate income below the
FPL. Compliance is measured using a binary variable indicating whether the participant was enrolled in any
Medicaid program during the study period.

We include as covariates in our response and complier models (S.1 and S.3, respectively) pretreatment
information on participant age, race, gender, education, marital status, number of children in the household,
employment status, health status, and household income. We also include indicator variables on household
size because lottery selection was random conditional on the number of household members. All analyses
in the current application cluster-adjust standard errors at the household level because treatment occurs at
the household level. The analyses also use survey weights to adjust for the probability of being sampled and
non-response.

The response data originate from a mail survey containing questions about health insurance and health
care use. The response variables measure health care use in terms of the number of ER and primary care (i.e.,
outpatient) visits in the past six months. Following Finkelstein et al. [24], indicator variables for survey wave
and interactions with household size indicators are also included as predictors in the response and complier
models because the proportion of treated participants varies across the survey waves.

5.2 Observational data

We acquire data on the target population from the National Health Interview Study (NHIS) [32] for the period
2008 to 2017.⁶We restrict the sample to respondents with income below 138% of the FPL and who are unin-
sured or on Medicaid and select covariates on respondent characteristics that match the OHIE pretreatment
covariates. We use a recoded variable that indicates whether respondents are on Medicaid as an analogue
to the OHIE compliance measure. The outcomes of interest from the NHIS are based on questions that are
virtually identical to the OHIE mail survey questions, except that the utilization questions in the NHIS are
asked with a 12 month rather than a 6 month look-back period. Following Finkelstein et al. [24], we resolve
this discrepancy by halving the NHIS responses in order to make them comparable to the OHIE outcomes.

5.3 Verifying assumptions

We verify the identification assumptions needed to identify τPATT-C prior to conducting placebo tests in Sec-
tion 5.4 and reporting the results in Section 5.5.

6 A possible limitation of this application is that it ignores the complex sampling techniques of the NHIS sample design such as
differential sampling, which is discussed in detail in Parsons et al. [33].
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5.3.1 Consistency

Assumption (1) ensures that potential outcomes for participants in the target population would be identical
to their outcomes in the RCT if they had been randomly assigned their observed treatment. In the empirical
application, Medicaid coverage for uninsured individuals was applied in the same manner in the RCT as
it is in the population. Differences in potential outcomes due to sample selection might arise, however, if
there are differences in the mail surveys used to elicit health care use responses between the RCT and the
nonrandomized study.

5.3.2 Conditional independence

Assumption (2) is violated if assignment to treatment influences the compliance status of individuals with the
same covariates. The compliance ensemble can accurately classify compliance status for 78% of treated RCT
participants with only the number of household members, survey wave (and the interaction between these
indicators and household size indicators), and pretreatment covariates — and not treatment assignment —
as predictors.⁷ This gives evidence in favor of the conditional independence assumption.

5.3.3 Strong ignorability

Wecannot directly test Assumptions (3) and (4),which state that potential outcomes for treatment and control
are independent of sample assignment for individuals with the same covariates and assignment to treatment.
The assumptions are only met if every possible confounder associated with the response and the sample
assignment is accounted for. In estimating the response surface, we use all demographic, socioeconomic,
and pre-existing health condition data that were common in the OHIE and NHIS data. Potentially important
unobserved confounders include the number of hospital and outpatient visits in the previous year, proximity
to health services, and enrollment in other federal programs.

The final two columns of Table B2 compares RCT participants selected for Medicaid with population
members on Medicaid. Compared to the RCT compliers, the population members who received treatment
are younger, female, and more racially and ethnically diverse. Diagnoses of diabetes, asthma, high blood
pressure, and heart disease are more common among the population on Medicaid then the RCT treated.

Strong ignorability assumptions may also be violated due to the fact that the OHIE applied a more strin-
gent exclusion criteria compared to the NHIS sample. While the RCT and population sample both screened
for individuals below the FPL, only the RCT required those enrolled to recertify their household income eligi-
bility during the study period. Strong ignorability would not hold if the failure to recertify is correlated with
unobserved variables.

5.3.4 No defiers

Angrist et al. [12] show that the bias due to violations of Assumption (5) is equivalent to the difference of
average causal effects of treatment received for compliers and defiers, multiplied by the relative proportion
of defiers, P(i is a defier)/(P(i is a complier) − P(i is a defier)).

Table B4 reports the distribution of participants in the OHIE by status of treatment assignment and treat-
ment received. Assumption (5) does not hold due to the presence of defiers; i.e., participants who were as-
signed to control and enrolled in Medicaid during the study period. About 7% of the RCT sample were as-

7 The compliance ensemble is evaluated in terms of 10–fold cross–validated MSE. The distribution of MSE for the ensemble and
its candidate algorithms are provided in Table B1.
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signed to control but were enrolled in Medicaid (Ti < Di) and 66% of the sample complied with treatment
assignment (Di = Ti), which results in a bias multiplier of 0.1. Suppose that the difference of average causal
effects of Medicaid received on ER use for compliers and defiers is 1.2%. The resulting bias is only 0.1%,which
would not meaningfully alter the interpretation of the PATT-C or CACE estimates.

5.3.5 Implied assumptions

We implicitly assumeno interferencebetweenhouseholds in theOHIEbecause treatment assignment occured
at the household level. Within-household interference is not possible in this RCT because household mem-
bers share the same treatment status. Interference between households would threaten the no-interference
assumption in the unlikely case that the Medicaid coverage of individuals in treated households affects the
health care use of individuals in households assigned to control.

The implied exclusion restriction assumption ensures treatment assignment affects the response only
through enrollment in Medicaid. It is reasonable that a person’s enrollment in Medicaid, not just their eligi-
bility to enroll, would affect their hospital use. For private health insurance one might argue that eligibility
may be be negatively correlated with hospital use, as people with pre-existing conditions are less often eligi-
ble yet go to the hospital more frequently. This should not be the case with a federally funded program such
as Medicaid.

5.4 Placebo tests

We conduct placebo tests to check whether the average outcomes differ between the RCT compliers on Med-
icaid and the adjusted population members who received Medicaid. If the placebo tests detect a significant
difference between the mean outcomes of these groups, it would indicate bias arising from violations of the
identification and modeling assumptions.

Table B3 reports the results of placebo tests for the weighted difference-in-mean outcomes of RCT com-
pliers and adjusted population members who received treatment. The mean outcome of RCT compliers is
calculated from the observed RCT sample and is weighted by OHIE survey weights. The adjusted population
mean is the counterfactual Yi11 estimated from S.4 of the estimation procedure, andweighted byNHIS survey
weights.

We first perform a Test of One-Sided Significance (TOST) [34] that evaluates equivalence between the
weighted distributions, with a failure to reject the null of a substantively large difference. The TOST p-value is
below the conventional level of significance (p ≤ 0.05), indicating rejection of the null of a substantively large
difference. Secondly, we conduct standard tests-of-difference and fail to reject the null of no difference. These
results imply that the PATT-C estimator is not biased by differences in how Medicaid is delivered or health
outcomes are measured between the RCT and population, or by differences in the unobserved characteristics
of individuals in the sample or population.

5.5 Empirical results

Table 1 compares population and sample estimates of the effect of Medicaid on health care use. The PATT-C
estimates indicate that Medicaid coverage has a statistically significant and negative effect on the number of
ER and outpatient visits. The PATT estimates, which do not account for noncompliance in the RCT, indicate
a similarly sized negative effect on the number of ER visits and no effect on the number of outpatient visits
attributable to Medicaid coverage. Our population estimates are consistent with the study of Kowalski [30],
which extrapolates LATE estimates to the Massachusetts population and find negative LATEs on ER utiliza-
tion.
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Table 1: Comparison of population and sample estimates.

Outcome
Estimator # ER visits # outpatient visits

PATT-C −0.002 −0.017
(0.0006) (0.0008)

PATT −0.001 0.003
(0.0004) (0.0027)

CACE 0.023 0.225
(0.0327) (0.0920)

Notes: survey-weighted difference-in-means; bootstrapped stan-
dard errors (in parentheses) are clustered on the household. Re-
sponse models include binary indicators for treatment received,
household size, survey wave (and interactions), and pretreatment
covariates.

The PATT-C estimates differ in direction and magnitude relative the CACE estimates on the OHIE sample,
which can be explained by differences in the covariate distributions of the RCT sample and population. The
CACE estimates indicate a positive and significant effect on primary care visits and no effect on ER use. The
direction and magnitude of the CACE estimated treatment effect on ER use is almost identical to the corre-
sponding LATE estimates on the RCT sample reported by Finkelstein et al. [24], although the authors uncover
a significant (positive) effect of Medicaid on ER use.

Treatment effect heterogeneity in the population helps to explain the differences between the complier-
adjusted sample and population treatment effect estimates. Figure 5 plots PATT-C estimates of heterogeneous
treatment effects on ER and outpatient use in the population. Heterogeneous treatment effects are estimated
by taking differences across response surfaces for a given binary covariate, and response surfaces are esti-
mated with the ensemble mean predictions. We find significant decreases in ER use due to Medicaid cover-
age for adult population members who are female, black, below the age of 50, have a vocational or two-year
degree, and have household income of over $10, 000. Populationmembers with diabetes, asthma, and heart

Figure 5: Heterogeneity in PATT-C treatment effect estimates. Notes: Horizontal lines represent 95% percentile bootstrap
confidence intervals.
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conditions are also less likely to visit the ER due toMedicaid coverage. The estimated effect ofMedicaid on the
number of outpatient visits is negative for population members who are over the age of 50, black, diagnosed
with a heart condition, have a vocational or two-year degree, and have household income of over $10, 000.

6 Discussion
The simulation results presented in Section 4 show that the PATT-C estimator outperforms its unadjusted
counterpart when the population compliance rate is low. Of course, the simulation results depend on the
particular way we parameterized the compliance, selection, treatment assignment, and response schedules.

In particular, the strength of correlation between the covariates and compliance governs how well the
estimator will perform, since S.1 of the estimation procedure predicts who would be a complier in the RCT
control group, had they been assigned to treatment. If it is difficult to predict compliance using the observed
covariates, then the estimator will perform badly because of noise introduced by incorrectly treating non-
compliers as compliers. Further research should be done into ways to test how well the model of compliance
works in the population or exploremodels tomore accurately predict compliance in RCTs. Accurately predict-
ing compliance is not only essential for yielding unbiased estimates of the average causal effects for target
populations, it is also useful for researchers and policymakers to know which groups of individuals are un-
likely to comply with treatment.

In the OHIE trial, less than one-third of those selected to receive Medicaid benefits actually enrolled. We
accurately classified compliance status for 78% of treated RCT participants using only the pretreatment co-
variates as features. While we do not know howwell the compliance ensemble predicts for the control group,
the control group should be similar to the treatment group on pretreatment covariates because of the RCT
randomization. The model’s performance on the training set suggests that compliance is not purely random
and depends on observed covariates, which gives evidence in favor of using PATT-C.

In the empirical application, the sample population differs in several dimensions from the target popu-
lation of individuals who would be covered by other Medicaid expansions, such as the ACA expansion. For
instance, the RCT participants are disproportionately white and over the age of 50. The RCT participants vol-
unteered for the study and may be in poorer health compared to the target population. These differences in
baseline covariates make reweighting or response surfacemethods necessary to extend the RCT results to the
population.

Explicitly modeling compliance allows us to decompose population estimates by subgroup according to
pretreatment covariates common to both RCT and observational datasets; e.g, demographic variables, pre-
existing conditions, and insurance coverage. We find substantial treatment effect heterogeneity in terms of
race, education, and health status subgroups. This pattern is expected because RCT participants volunteered
for the study.

The PATT-C estimates indicate that Medicaid coverage significantly decreases the number of ER and out-
patient visits. The estimated effect on ER utilization is consistent with quasi-experimental studies on the
impact of the 2006 Massachusetts health reform and a previous study that extrapolates LATE estimates on
the OHIE sample to the Massachusetts population. The PATT-C estimates differ in direction and magnitude
relative the complier-adjusted sample estimates, which can be explained by treatment effect heterogeneity in
the population and the differences in covariate distributions of the RCT sample and population.
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public repository https://github.com/jvpoulos/patt-c.
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A Proof of Theorem (1)

Proof. We separate the expectation linearly into two terms and consider each individually.

E
(︀
Yi01 | Si = 0, Di = 1

)︀
= E

(︀
Yi11 | Si = 0, Di = 1

)︀
by Assumption (1)

= E
(︀
Yi11 | Si = 0, Ti = 1, Ci = 1

)︀
by Assumption (5)

= E01
[︀
E
(︀
Yi11 | Si = 0, Ti = 1, Ci = 1,Wi

)︀]︀
= E01

[︀
E
(︀
Yi11 | Si = 1, Ti = 1, Ci = 1,Wi

)︀]︀
by Assumption (3)

= E01
[︀
E
(︀
Yi11 | Si = 1, Di = 1,Wi

)︀]︀
.

Intuitively, conditioning on Wi makes sample selection ignorable under Assumption (3). This is the critical
connector between the third and fourth lines of the first expectation derivation.

E
(︀
Yi00 | Si = 0, Di = 1

)︀
= E

(︀
Yi10 | Si = 0, Di = 1

)︀
by Assumption (1)

= E
(︀
Yi10 | Si = 0, Ti = 1, Ci = 1

)︀
by Assumption (5)

= E01
[︀
E
(︀
Yi10 | Si = 1, Ti = 1, Ci = 1,Wi

)︀]︀
by Assumption (4)

= E01
[︀
E
(︀
Yi10 | Si = 1, Ti = 0, Ci = 1,Wi

)︀]︀
. by Assumption (2)

The last line follows becauseAssumption (2) allows us to use RCT controlswhowould have complied had they
been assigned to treatment. Finally, the result follows by plugging these two expressions into Eq. (1).
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B Tables & Figures

Figure B1: Average RMSE according to degree of confounding in compliance.

Table B1: Distribution of MSE for compliance ensemble.

Algorithm Mean SE Min. Max.
Super learner (SuperLearner) 0.22 0.001 0.21 0.23
Lasso regression (glmnet) 0.22 0.001 0.21 0.23
Random forests (randomForest) 0.27 0.002 0.25 0.29
Ridge regression (glmnet) 0.22 0.001 0.21 0.23
MSE is 10-fold cross-validated error for super learner ensemble and candidate algorithms. R package
used for implementing each algorithm in parentheses.
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Figure B2: Average RMSE according to degree of confounding in treatment assignment.

Figure B3: Average RMSE according to degree of confounding in sample selection.
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Table B2: Pretreatment covariates and responses for OHIE and NHIS respondents by Medicaid coverage status.

OHIE OHIE NHIS
no Medicaid Medicaid Medicaid
n = 13, 573 n = 5, 547 n = 6, 256

Covariate N % N % N %
Age:
19-49 4,166 31.0 1,473 26.9 4,322 69.2
50-64 9,407 69.0 4,074 73.1 1,934 30.8

Education:
Less than high school 2,181 15.8 1,028 18.3 1,941 30.8
High school diploma or GED 6,948 50.9 2,948 52.7 2,074 33.3
Voc. training / 2-year degree 2,889 21.5 1,118 20.8 1,809 29.1
4-year college degree or more 1,555 11.8 453 8.2 432 6.8

Ethnicity:
Black 193 3.1 247 3.5 1,723 27.0
Hispanic 1,242 9.3 509 9.0 1,570 24.9
White 11,453 84.2 4,675 84.7 3,899 63.0

Gender:
Female 7,807 57.8 3,280 59.3 4,285 68.4

Health status:
Asthma 2,114 15.6 1,004 18.3 1,269 20.1
Diabetes 1,484 10.7 595 11.0 864 14.0
Heart condition 302 2.1 178 3.1 529 8.5
High blood pressure (HBP) 3,740 27.4 1,533 28.1 2,162 34.9

Income:
< $10k 6,003 43.7 3,488 62.6 2,587 41.8
$10k-$25k 5,583 41.7 1,678 30.5 3,095 49.2
> $25k 1,987 14.6 381 6.9 574 9.0

Responses Mean S.d. Mean S.d. Mean S.d.
# ER visits 0.45 1.00 0.40 0.85 0.25 0.54
# outpatient visits 1.98 2.97 1.98 2.92 1.07 1.21

Notes: percentages calculated using OHIE or NHIS survey weights.

Table B3: Placebo tests.

Outcome RCT complier Adjusted population Weighted TOST Two-sided
weighted mean weighted mean difference-in-means p-value p-value

# ER vists 0.449 0.466 -0.017 < 0.001 0.202
# outpatient visits 1.966 2.029 -0.063 < 0.001 0.090
Notes: p-values correspond to survey-weighted difference-in-means estimated from bootstrapped standard errors, which are
clustered on the household. TOST p-value evaluates equivalence between the weighted distributions, and the two-sided p-value
evaluates difference between the weighted distribution.
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Table B4: Distribution of OHIE participants by status of treatment assignment (Ti) and treatment received (Di).

Di = 0 Di = 1 N

Ti = 0 8,343 1,265 9,608
Ti = 1 5,230 4,282 9,512
N 13,573 5,547 19,120

Table B5: Error and weights for candidate algorithms in response ensemble for RCT compliers.

# ER visits

Algorithm MSE Weight
Additive regression, degree = 2 (gam) 0.81 0
Additive regression, degree = 3 (gam) 0.81 0
Additive regression, degree = 4 (gam) 0.81 0
Boosted regression (gbm) 0.79 0
Lasso regression (glmnet) 0.79 0.76
Random forests, #preds. = 1 (randomForest) 0.79 0.18
Random forests, #preds. = 10 (randomForest) 0.83 0.06
Regularized linear regression, α = 0.25 (glmnet) 0.79 0
Regularized linear regression, α = 0.5 (glmnet) 0.79 0
Regularized linear regression, α = 0.75 (glmnet) 0.79 0
Ridge regression (glmnet) 0.79 0

# outpatient visits

Algorithm MSE Weight
Additive regression, degree = 2 (gam) 6.60 0
Additive regression, degree = 3 (gam) 6.60 0
Additive regression, degree = 4 (gam) 6.60 0
Boosted regression (gbm) 6.48 0
Lasso regression (glmnet) 6.47 0.87
Random forests, #preds. = 1 (randomForest) 6.47 0
Random forests, #preds. = 10 (randomForest) 6.73 0.13
Regularized linear regression, α = 0.25 (glmnet) 6.47 0
Regularized linear regression, α = 0.5 (glmnet) 6.47 0
Regularized linear regression, α = 0.75 (glmnet) 6.47 0
Ridge regression (glmnet) 6.47 0
Notes: cross-validated error and weights used for each algorithm in super learner ensemble.MSE is the ten-fold cross-validated
mean squared error for each algorithm.Weight is the coefficient for super learner, which is estimated using non-negative least
squares based on the Lawson-Hanson algorithm. R package used for implementing each algorithm in parentheses. #preds. is the
number of predictors randomly sampled as candidates in each decision tree in random forests algorithm. α is a parameter that
mixes L1 and L2 norms. degree is the smoothing term for smoothing splines.
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Table B6: Error and weights for candidate algorithms in response ensemble for all RCT participants.

# ER visits

Algorithm MSE Weight
Additive regression, degree = 2 (gam) 0.76 0
Additive regression, degree = 3 (gam) 0.76 0
Additive regression, degree = 4 (gam) 0.76 0
Boosted regression (gbm) 0.75 0
Lasso regression (glmnet) 0.75 0
Random forests, #preds. = 1 (randomForest) 0.75 1
Random forests, #preds. = 10 (randomForest) 0.79 0
Regularized linear regression, α = 0.25 (glmnet) 0.75 0
Regularized linear regression, α = 0.5 (glmnet) 0.75 0
Regularized linear regression, α = 0.75 (glmnet) 0.75 0
Ridge regression (glmnet) 0.75 0

# outpatient visits

Algorithm MSE Weight
Additive regression, degree = 2 (gam) 6.44 0
Additive regression, degree = 3 (gam) 6.44 0
Additive regression, degree = 4 (gam) 6.44 0
Boosted regression (gbm) 6.39 0
Lasso regression (glmnet) 6.39 0.87
Random forests, #preds. = 1 (randomForest) 6.39 0
Random forests, #preds. = 10 (randomForest) 6.61 0.13
Regularized linear regression, α = 0.25 (glmnet) 6.39 0
Regularized linear regression, α = 0.5 (glmnet) 6.39 0
Regularized linear regression, α = 0.75 (glmnet) 6.39 0
Ridge regression (glmnet) 6.39 0
See notes to Table B5.
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